Перейти к публикации

Присадки в двигатель ОБЩАЯ


Гость shumaxerGT

Рекомендованные сообщения

Вообще есть такая тема про присадки в двигатель топливо. :)

 

Я присадок в двигатель не использовал - никогда на протяжении 7ми лет. Единственное лил кастрол ТБЕ в бак убрать воду. И промывал топливную систему на установке агрессивным средством Wynn's

Ссылка на сообщение
Другие ответы в этой теме

В настоящий момент еще один тестирую на 1500 км снизил расход масла на литр, ждем ренламента обещают вообще убрать или снизить до минимума.

открой карты-то, какой состав новый(название)? (можно хоть в личку)
Ссылка на сообщение

Название не известное смысла все равно нет, закончим эксперимент может быть два мотора, потом дам информацию, пока информации мало для выводов каких либо... В том числе коробка была обработана.

Изменено пользователем Руслан
Ссылка на сообщение
Оффтоп
Ссылка на сообщение

Конечно, ведь все эти модификаторы трения в своей основе имеют абразив, который сначала дает положительный эффект, а потом начинает приносить еще больше вреда.

Хадо это керамика - которая покрывает поверхности трения и не отводит тепла от масла(масло нагревается сильнее и его свойства перестают работать в полной мере), не борется с водородным износом - основной причиной разрушения деталей, пленка со временем становится очень толстой, что нарушает микрогеометрию деталей, и не растворяется в масле, засоряет фильтра и способствует абразивному износу.

Ликви МОйли это дисульфат молибдена - тот же самый абразив в итоге.

Супротек это вообще отдельная песня - серпентиниты, фуллерены. Они работают только в паре твердых металлов, иначе абразивы вклиниваются в более мягкий металл и начинают разрушать более твердый более интенсивно.

ХАДО и Супротек - есть производное одного минерала - серпентина (замечу не серпентинита, как Вы указываете). 90% из Ваших слов о технологии (РВС-технология), к которой относятся упомянутые Вами продукты - вымысел и недоказанные факты. Само направление применения серпентина в качестве антифрикционного материала берет свое начало с конца 60-х годов прошлого века, а не с 80-х. Первая диссертация по этой технологии защищена в 1978 году Маринич Т.Л. в Ленинградском Политехническом институте.

Уважаемый VALENA SV не ленитесь проверять информацию, публикуемую Вами.

Ссылка на сообщение

Hi,

 

I'm not from Russia, but does our country sold Resurs addetive.

What do you think of the additive

 

Do you have a oil test of Resurs Diesel

 

 

Thanks :)

Изменено пользователем green_energy
Ссылка на сообщение

Всем здравия!  

Не нашёл в ветке заинтересовавшую меня добавку "Форум" из Владивостока. (вышел на неё по хорошим отзывам на "ганзе" их продукта "сухой смазки")  Может пользовал кто,или пусть гуру разберут по"молекулам и наноплёнкам" ))

Ссылка на сообщение

Добрый день! Подскажите пожалуйста, какую присадку лучше (для мотора)  заливать: длительной промывки или 5ти минутную?

Ссылка на сообщение

@r1sh, длительная якобы эффективнее. 

 

а по производителям случайно нигде тестов нет? Я себе взял LM 1990, но полазив в инете увидел аналогичные у Тотек, Афк, Лавр и тд и тп. Соответственно и отзывов много, но сложно отличить плацебо от правды)

Ссылка на сообщение

а по производителям случайно нигде тестов нет? Я себе взял LM 1990, но полазив в инете увидел аналогичные у Тотек, Афк, Лавр и тд и тп. Соответственно и отзывов много, но сложно отличить плацебо от правды)

 

Весь вопрос в том, что протестировать присадку очень нудное дело, которому предшествуют неоднократные тесты отработок ДАННОГО двигателя. Одно известно достоверно: долгоиграющая безопаснее и ее применение не приведет к катастрофе даже на машламленном моторе... 

Ссылка на сообщение

а если промыть 2-3 раза долгоиграющей промывкой, снять клапанную крышку, убедиться, что всё не сильно печально, то чем после эффективно промыть двс?

 

Можно ли пользоваться присадками для прочистки клапанов и прочего нагара?

Ссылка на сообщение

а если промыть 2-3 раза долгоиграющей промывкой, снять клапанную крышку, убедиться, что всё не сильно печально, то чем после эффективно промыть двс?

 

Можно ли пользоваться присадками для прочистки клапанов и прочего нагара?

 

После двух долгоиграющих  промывок там будет все хорошо...Щлама на 90% не останется...А лак не отмыть все равно, не грей голову!

Ссылка на сообщение

Был один отчет у Nordman по долговременным промывкам 

http://www.oil-club.ru/forum/topic/40-promivki-dvigatelja-pjatiminutki-obshaja/?p=21835

давайте перейдем в тут тему с промывками. 

Ссылка на сообщение

вот что интересное нарыл по тойоте  1UR FSE

 

вкладыши 1URFSE.JPG

 

поршень 1URFSE.JPG

 

спорим тут за покрытия от присадок и снижение трение, а заводское полимерное покрытие вкладышей и юбки поршней   :) к чему там приставать и внедряться молекулам :)

 

справедливости ради оно конечно сотрется со временем, вот тогда присадки заработают.

Изменено пользователем Nordman
Ссылка на сообщение

Нашел статейку про БАДы ,  скопировал , пока не читал 

 

Присадки к маслам – что это?

Что дают самые спорные препараты автохимии? В теорию вопроса углубился профессор Александр Шабанов.
Ехидная усмешка рекламы любит прятаться за обилием обещаний и заумностью формулировок. Типичный пример – автохимия: напустить тумана здесь проще простого. Развеять его помогает классическая теория двигателей внутреннего сгорания (ДВС), которая прекрасно знает, на какие реальные эффекты можно надеяться.
На что обычно хочется повлиять среднему потребителю, изучающему витрину с препаратами? Пожалуй, намощность и динамику автомобиля. Да еще на расход топлива. А возможно ли такое теоретически? И если да, то как этот эффект получить? И неплохо бы знать, насколько существенным он может быть, чтобы заранее не готовиться к чудесам.

ИНФОРМАЦИЯ К РАЗМЫШЛЕНИЮ
Берем литр топлива и сжигаем его в двигателе. Какая часть этого литра принесет нам пользу, а какая пропадет зря? Иными словами, чему равен коэффициент полезного действия? 
Самыми совершенными и эффективными являются тяжелые малооборотные судовые дизели с цилиндрами больших диаметров. Там из каждого литра топлива на пользу идет до 520–540 миллилитров. Остальное греет воздух (вместе с отработавшими газами и охлаждающей жидкостью), а также крутит насосы и агрегаты. Совсем небольшая часть (не больше 10–20 мл) не сгорает, а потому портит атмосферу. Чем миниатюрнее двигатель и чем выше обороты, тем меньше топлива идет в толк. В одноцилиндровом бензиновом движке бензопилы или газонокосилки из литра бензина толково используется всего 150–200 мл. Автомобильные двигатели – где-то посередине.
В реальности всё гораздо хуже, чем на стенде. К примеру, едем мы в пятницу из города (читай: стоим в пробке). Мотор крутится на холостых, качество сгорания никудышное. Из того же литра бензина не сгорит 80–100 мл: сказывается плохое качество газообмена, а вместе с ним и сгорания – из-за сильно прикрытой дроссельной заслонки. А все остальное топливо идет на обеспечение жизни мотора, нам от него не достается ничего – разве что в виде холодного потока от кондиционера. Иными словами, эффективная мощность, а также эффективный и механический КПД вообще равны нулю, поскольку машина не движется. При увеличении подачи топлива мощность растет, а с ней и оба этих КПД. Но в любом случае механический КПД при номинальной частоте вращения коленчатого вала и полной нагрузке не поднимается выше 0,75 для высокооборотного двигателя и 0,90–0,92 для малооборотного. А в среднем для автомобильного мотора в режимах городского цикла он составит 0,35–0,50.
Итак, мы, во первых, сжигаем не всё, что льем в цилиндры. Во вторых, слишком много расходуем на обеспечение функционирования мотора, то есть на механические потери.
Пути повышения эффективности ДВС очевидны: нужно повысить полноту сгорания и снизить непроизводительные потери. На качество сгорания присадки точно не влияют. А на потери?

КРИЗИСНЫЙ МЕНЕДЖЕР
Механические потери, съедающие львиную долю топлива, состоят из нескольких слагаемых. Потери на привод механизма газораспределения плюс расходы на масляный и топливный насосы, помпу системы охлаждения, генератор и привод крыльчатки вентилятора, а также на мощность, необходимую для осуществления процесса газообмена, – это так называемые насосные потери. Всё остальное (от 50 до 80%) – потери на преодоление сил трения в двигателе. Вот с трением как раз и борются триботехнические составы.
В двигателе трение может быть трех видов.
При сухом трении две шероховатые поверхности скребутся друг о друга без всякой смазки. Такое случается только тогда, когда смазочная система еще не работает, то есть в пусковых режимах после длинного простоя.
В случае граничного трения между поверхностями есть следы масла, но толщина разделяющего слоя недостаточна для формирования устойчивой пленки. Это возможно в некоторых рабочих режимах – например, при низкой частоте вращения коленчатого вала и высокой нагрузке. Такое может случиться и если нагрузки на узлы трения велики, а масло слишком горячее.
Третий вид, основной, – гидродинамическое трение: поверхности деталей, образующих пару трения, разделены устойчивой масляной пленкой, толщина которой превышает некоторую критическую величину, условно принимаемую за утроенную суммарную высоту шероховатостей поверхностей.
При сухом трении его сила может достигать 20–40% внешней нагрузки, при граничном – 5–15%, а при гидродинамическом падает до долей процента. Очевидно, что для экономии хорошо бы заставить работать в гидродинамическом режиме все пары. Для этого оптимизируют форму деталей и выбирают подходящие масла. А еще можно уменьшить суммарную шероховатость поверхностей и снизить коэффициенты трения на них, тогда и зона гидродинамического трения расширится. Особенно это важно при малых частотах вращения коленчатого вала, когда нет условий для формирования достаточного разделяющего слоя, и в режимах максимальных нагрузок, когда слой «просаживается» мощными контактными давлениями. Запомним это!
Особо продвинутые могут возразить: но ведь на абсолютно гладких поверхностях и масло держаться не будет, вспомните, дескать, про хонингование. И будут правы! Однако тут начинают работать новые свойства поверхностей, обусловленные применением трибосоставов. Но об этом – чуть ниже.

КАК?
Итак, как работают трибосоставы? Вариантов может быть несколько, и они зависят от того, на базе какого активного компонента эти составы построены. Основные механизмы следующие.
Микрошлифовка. Наиболее эффективный по воздействию на поверхности трения трибосостав построен на базе геомодификаторов трения – минеральных порошков особого состава, которые при формировании защитного слоя шлифуют рабочие поверхности узлов трения, уменьшая высоту микронеровностей в два-три раза. При этом на 15–20% увеличивается твердость поверхностных слоев пар трения. А это означает рост износостойкости поверхностей – твердость с ней коррелирует очень четко.
Металлоплакирующие составы укрывают шероховатую поверхность новым микрослоем, состоящим из мягких металлов (чаще всего из меди), при этом шероховатость тоже резко падает. Уменьшается и коэффициент трения. Но при этом снижается твердость! Очевидно, что компенсация износа мягкого защитного слоя будет происходить, только когда в масле достаточно «строительного материала» – той же меди, а потому использование таких составов требует регулярного ввода их в масло, как минимум при каждой его смене.
Плакирование слоистыми модификаторами или полимерами. Это отдельная группа составов, которые содержат вещества (например, графит, дисульфид молибдена, тефлон), чье внедрение в поверхностные слои узлов двигателя резко снижает коэффициент трения. Удаление отложений. Большинство трибосоставов при вводе в двигатель начинают его активно мыть, удалять отложения в зонах трения. В частности, это улучшает подвижность поршневых колец, их прилегаемость к зеркалу цилиндра.

И ЧТО?
Что это дает двигателю? Эффектов несколько, и в сумме они дают рост мощности и снижение расхода топлива.
Удаление царапин. Это один из важных аспектов воздействия трибологических составов на процессы трения. Они умеют «залечивать» рабочие поверхности.
В процессе жизненного цикла на поверхностях вкладышей подшипников, шеек коленчатого вала, цилиндров и поршневых колец образуются продольные царапины, сколы антифрикционного слоя, раковины и прочие «украшения». Глубина этих дефектов обычно существенно превышает рабочую толщину масляной пленки. Но в результате обработки двигателя трибосоставом дефекты зашлифовываются или плакируются. При этом восстанавливается несущая способность подшипников, что также снижает механические потери, особенно у «пожилого» мотора.
Снижение трения. Трибосоставы снижают коэффициенты трения! Есть целый спектр режимов работы двигателя, в которых либо масляная пленка слаба (при малых оборотах), либо нагрузки слишком велики (номинальные режимы), либо масло слишком горячее (они же плюс малые обороты с высокой нагрузкой). В этих зонах велика доля граничного трения, которое может на порядок превышать гидродинамическое. Именно поэтому максимальный эффект обработки двигателя трибосоставами проявляется на холостом ходу, когда вся вырабатываемая при сгорании энергия идет на механические потери, а также на малых оборотах и при номинальных нагрузках на двигатель.
А вот при средних нагрузках, обычно характерных для шоссейного цикла езды, эффект менее заметен. Но там мотору и так неплохо живется – давление масла высокое, обдув хороший, режим работы относительно стабильный.
Рост и выравнивание компрессии. Удаление отложений, а также залечивание дефектов трения на рабочих поверхностях цилиндров и колец на практике проявляется заметным ростом компрессии и ее выравниванием между отдельными цилиндрами. Тут тоже получается процент-другой экономии, но главное – улучшение пусковых показателей двигателя.

Ошибка в терминологии
- Присадки в масло как таковые – неотъемлемая часть обычного товарного масла, формирующая его свойства. Мы заливаем присадки всякий раз при смене моторного масла, причем их количество составляет 20–30% общего объема масла. А описываемые препараты не формируют его свойств – они влияют на свойства поверхностей трения. Это совсем другая область. Потому правильнее называть группу препаратов триботехническими составами.
- Геомодификаторы трения (ГМТ) – группа трибосоставов, имеющая в качестве активного элемента мелкодисперсные минеральные порошки на базе серпентинита (змеевик), обеспечивающего мягкую микрошлифовку поверхностей трения и формирование на нем защитных слоев.
- Металлоплакирующие составы – группа трибосоставов, активным компонентом которых являются мелкодисперсные частицы мягких металлов, чаще всего меди. Формируют в узлах двигателя стойкую пленку, укрывающую шероховатую рабочую поверхность зоны трения.
- Слоистые модификаторы – группа трибосоставов, в которых работают вещества (графит, дисульфид молибдена и аналогичные), обеспечивающие благодаря слоистой структуре аномально низкий коэффициент трения в поверхностных слоях рабочих поверхностей трения.
- «Кондиционеры металлов» – маркетинговый термин, введенный производителем состава. Формируют защитную «сервовитную» пленку (тоже маркетинговый термин), по всем признакам обладающую свойствами составов вышеописанных групп.

И СКОЛЬКО?
С теорией ясно: трибосоставы способны приносить пользу. А на практике? Наибольший эффект следует искать там, где доля механических потерь сильнее всего влияет на КПД. А это, конечно же, холостой ход. Обороты минимальны, двигатель работает в режиме преимущественно граничного трения. Допустим, что обработка трибосоставом снизила коэффициенты трения в полтора раза. Теперь примем, что доля потерь на трение в общем балансе механических потерь составляет 60%. Это означает, что суммарный ожидаемый эффект снижения расхода топлива в режиме холостого хода может составить до 20%!
Зона малых частот вращения, до 1500–2000 об/мин, характеризуется примерно равным соотношением зон гидродинамического трения и граничного. Эффект снижения гидродинамического трения зависит от исходного состояния двигателя. У нового, правильно обкатанного, он практически незаметен. Если же двигатель был побит жизнью и неласковым владельцем, а вкладыши и цилиндры поцарапаны, то тут за счет восстановления поверхностей можно ждать около 5–7% снижения потерь на трение. Суммарный же эффект может составить 10–12%, что в пересчете на экономию топлива даст 3–6%, в зависимости от нагрузки на двигатель.
В основной зоне работы двигателя, когда работает гидродинамика, видимый эффект снижения потерь на трение будет минимальным – те же 5–7%, причем зависящие от исходного состояния двигателя. А это сулит снижение расхода топлива всего на 1,5–2,0%.
А дальше – считайте. Всё зависит от того, что было с мотором до обработки, в каких режимах он в основном работает. Рассмотрим пример обычной легковушки с атмосферным движком объемом 1,6 л. Предположим, что около 40% рабочего времени она стоит в пробках, расходуя 0,8 л/ч. Ровно такое же время отпустим на езду по городу со средней скоростью 40 км/ч и расходом топлива 10 л/100 км. Плюс на дачу по выходным (суммарно 20% времени в неделю) – со скоростью 90 км/ч и расходом 8 л/100 км. В среднем три часа в пути каждый день. Исходное состояние мотора – среднеубитое. Еженедельный расход топлива составляет примерно бак, то есть 50 л. После обработки трибосоставом (качественным и правильным, естественно) расход снизится до 46 л в неделю, то есть на 8%! И это – правильная и оправданная цифра.
Если в пробках стоять больше, а на трассу вообще не выезжать, экономия будет заметнее, поскольку в этих режимах более значима мощность потерь на трение. Если использовать машину в режиме деда-дачника, то видимый эффект будет меньше: в этих режимах механический КПД и так неплохой, небольшое его увеличение даст лишь несколько процентов снижения расхода топлива. В среднем не больше 5–10%. Много это или мало? Решайте сами!
А что ждать от мощности и динамики?
Рост мощности должен быть прямо пропорционален снижению мощности потерь на трение. Сколько это в «лошадях»? Допустим, тот же самый мотор имеет номинальную мощность 105 л.с. При механическом КПД, равном в номинальном режиме 0,73 (для атмосферника это где-то так), на механические потери приходится 39 л.с.
На номинале, где в основном работает гидродинамика и лишь малая часть времени приходится на граничное трение, снижение мощности механических потерь составит 5–8%. Это две-три «лошадки». Много? Не очень – но соизмеримо с результатом простейшего тюнинга мотора, без его вскрытия. Важно другое: наибольший эффект по динамике, как показывает практика испытаний, идет от изменения моментной кривой двигателя. Несмотря на сравнительно небольшой рост максимального крутящего момента, его максимум сдвигается ближе к зоне малых оборотов и сама кривая получает полку. А это то самое, что в большей степени ощущается при нажатии педали акселератора.
Итак, даже с точки зрения теории толк от трибосоставов вполне объясним. Но это только начало разговора о присадках в масло. Остается еще много вопросов – например, что еще они могут, какие лучше и как их применять. Но об этом – в следующий раз.

Оригинал статьи

Ссылка на сообщение

Присоединяйтесь к обсуждению

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.

Гость
Ответить в теме...

×   Вставлено в виде отформатированного текста.   Вставить в виде обычного текста

  Разрешено не более 75 эмодзи.

×   Ваша ссылка была автоматически встроена.   Отобразить как ссылку

×   Ваш предыдущий контент был восстановлен.   Очистить редактор

×   Вы не можете вставить изображения напрямую. Загрузите или вставьте изображения по ссылке.

  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу.

×
×
  • Создать...